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Abstract

We consider the stability of bound-state solutions of a family of reg-
ularized nonlinear Schrodinger equations which were introduced by Du-
mas, Lannes and Szeftel as models for the propagation of laser beams.
Among these bound-state solutions are ground states, which are defined
as solutions of a variational problem. We give a sufficient condition for
existence and orbital stability of ground states, and use it to verify that
ground states exist and are stable over a wider range of nonlinearities
than for the nonregularized nonlinear Schrodinger equation. We also give
another sufficient and almost necessary condition for stability of general
bound states, and show that some stable bound states exist which are not
ground states.
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1 Introduction

In this paper, we consider regularized nonlinear Schrédinger equations recently
introduced as models for the propagation of laser beams in [11], and further
studied in [2, 3, 23]. One of these equations is the fully regularized equation

i(u — BAu): + Au+ |u|Pu =0, (1.1)
with 8 > 0, whose relation to the nonlinear Schrodinger (NLS) equation,
ius + Au + |ulPu =0, (1.2)
is similar to that between the Korteweg-de Vries equation

Ug + Up + Ugze + Uty =0



and its regularized counterpart, the Benjamin-Bona-Mahony equation [4]
(4 = Buza)i + Ue + Upea + utiy = 0. (1.3)
More generally, we will consider partially regularized equations of the form
i(Pgu) + Au + |[ulPu = 0. (1.4)

In (1.4), the complex-valued function u(x,t) is defined for + € R and x € R¢,
d > 1. In the physical situations for which (1.4) is derived as a model equation
in [11], B is a real parameter with 0 < 8 < 1, but for the purposes of the present
paper we only need to assume that g > 0.

The operator Pg is defined as follows. Fix an integer £ such that 0 < £ < d.
Let x = (z1,...,24) € R% For 1 < k < d— 1, we write x = (x,%), where
= (z1,...,24-%) € R"* and y = (y1,...,yr) € R¥, where y; = x4_p4; for
1 <j <k. We define

Pgu :=u — fAyu,

where Ayu = Z_];:l Uy,y;- In case k = d, we define Pgu = u— BAwu, so that (1.4)
becomes (1.1). In the case k = 0, we simply define Pgu = u, so that then (1.4)
reduces to (1.2). When 1 < k < d — 1, the inclusion of the operator Pg in (1.4)
has the effect of inducing regularization in some, but not all, of the coordinate
directions in R9.

Our goal here is to study the effect of this partial regularization on the
stability of bound-state solutions of (1.4), i.e. solutions of the form

wwt

u(x,t) = e"“"p(x)

where w is real and ¢ is in the L2-based Sobolev space H'(R%). First, in
Theorems 1.8, 4.11, and 4.12, we give a variational characterization of certain
bound states, known as ground states, and prove their orbital stability by a
method similar to that used by Cazenave and Lions for the NLS equation in
[9]. Then in Theorem 1.9, we prove the orbital stability of a wider class of
bound-state solutions corresponding to phase speeds w such that m’(w) > 0,
where m(w) is the function defined below in (1.13). The condition m/(w) > 0
was identified by M. Weinstein [26, 27, 28] as a sufficient condition for orbital
stability for bound-state solutions of the NLS equation, corresponding to the
case k = 0, and the proof of Theorem 1.9 proceeds by generalizing Weinstein’s
approach to the case k > 1.

Our stability results concern the initial-value problem set for equation (1.4)
in certain inhomogeneous Sobolev spaces which we now proceed to define.

Definition 1.1. Ford > 1,0 <k < d, andl € N, let X;,; be the space of all
functions u € L*(RY) such that

(14 A,)"?u e H'(R?).



When k = 0, then X ; = H'(R?), and when k = d then X;; = H'T1(R?).
When 1 < k < d— 1, then Xj; can be characterized as follows. Define
L2(REF, HY(RY)) to be the space of all functions u(x) = u(z,y) such that

1/2
ol 1y = ( [ T M ag dx) <ol

Then X, = H' (RS, H'(R)), the space of all functions u € L?(R%) such that
u, and all the partial derivatives of u with respect to x; and y; up to order I,
are in L2(RZ~F Hl(RZ)).

Two functionals which play an important role in the evolution of solutions
of (1.4) are the conserved functionals defined for u € H! by

Blu) = /{;V“'Q - <pi2>'“'p+2}dx

M(u) = %/{|u|2+ﬂ|vyu\2}dx, (1.5)

where Vu = (Ugy, Ugys - - -, Ugy) a0d Vit = (Uy,, Uy, , - - -, Uy, ). When k=0 we
define M(u) = 3 [|ul> dx. (Here and frequently below, we use H' to denote
H'(R%), and all integrals are taken over R?, unless otherwise specified. For a
complete list of notations used in the paper, see Section 2.) It follows from
Sobolev embedding theorems (see Theorem 2.1 below) that E(u) and M (u) are
well-defined and continuous on H*! for 0 < p < p.(d), where p.(d) is defined in
(2.3).

Let X be a Banach space consisting of functions defined on R?, and let
C(R, X) be the space of continuous maps from R to X. We say that the initial-
value problem for (1.4) is globally well-posed in X if for every ug € X, there
exists a unique solution u(x,t) of (1.4) which, when viewed as a map taking ¢
to u(-,t), is in C(R, X) and has initial data u(-,0) = ug; and if the map taking
up to u is continuous from X to C(R, X).

We can now state the well-posedness result from [2] that we will use in this

paper.

Theorem 1.2 ([2]). Suppose d > 1 and 0 < k < d — 1. If either k < 2 and
0<p< d%“k, ork >2and 0 < p < d%, then (1.4) is globally well-posed
in Xio and in Xg1. If k = d, then (1.4) is globally well-posed in H'(R?) for
0<p< 2 (whend>3) and for 0 < p < oo (whend =1 ord=2).

Solutions u(x,t) of (1.4) with initial data u(x,0) = ug(x) in Xy o satisfy
M (u(-,t)) = M(ug) for all t € R; and solutions of (1.4) with initial data ug in
H' N X1 satisfy E(u(-,t)) = E(ug) for allt € R.

and, if 1 < k <d,

For proof of the assertions of the preceding theorem concerning well-posedness
in X} o and the conservation of the functional M, the reader is referred to The-
orems 1.1 and 1.3 of [2]; for well-posedness in X}, 1, see Proposition 4.2 of [2].
As noted in [2], similar well-posedness results are available in Xy, for | > 2.



To prove the assertion of the theorem regarding the conservation of the func-
tional E, one notes that by the results of [2], to each choice of initial data if
ug € H' N X}, 1, there corresponds a unique solution of (1.4) in C(R, H'), and
the solution depends continuously on the data. The conservation of E then fol-
lows from a standard argument which is similar to the proof given in Theorem
3.3.9 of [8] for the NLS equation.

We define a bound-state solution of (1.4) to be any solution of the form
u(x,t) = p(x)e™?, where ¢ € H' and w € R; we refer to ¢ as a bound-state
profile, and to w as its phase speed. Thus ¢ is a bound-state profile with phase
speed w if and only if ¢ € H' is a solution of

—Ap +wPsp = [p|Pe. (1.6)

In order to discuss the existence and properties of solutions to (1.6), we first
observe that if w > 0, and if ¢ € H' is related to R € H' by

o(x) = @(z,y) = R(z, (1 + Bw) %),
then ¢ is a solution of (1.6) if and only if
—AR+wR = |R|PR. (17)

(Here, as throughout the paper, we use the convention that the notation f(z,y)
stands for f(z) if Kk = 0 and f(y) if ¥ = d.) Furthermore, R is a solution of
(1.7) if and only if the function @ € H' defined by

R(x) = w!/PQ(w'x)
is a solution of the equation
-AQ +Q = [QPQ. (1.8)

We say that a function Q on R is nontrivial if Q(x) # 0 for some x € R%.
Concerning nontrivial nonnegative solutions of (1.8), we have the following well-
known result.

Lemma 1.3. Suppose d > 1, and suppose 0 < p < p.(d), where p.(d) is as
defined in (2.3). Then equation (1.8) has a radial solution Qg, on RY which
satisfies Qa,p(x) > 0 for all x € RL. Moreover, every montrivial nonnegative
solution of (1.8) in H' must be a translate of Qap-

Proof. See Theorems 8.1.4, 8.1.5, and 8.1.6 of [8]. (Note that although the
assertion that every nontrivial nonnegative solution of (1.8) in H! is a translate
of Qq,p is not explicitly stated in these theorems from [8], it is established in
the proofs given there.) O

From the above considerations, we immediately deduce the following.



Lemma 1.4. Suppose d > 1,0 <k <d, and 0 < p < p.(d). For each w > 0
and 8 > 0 there exists a nontrivial nonnegative solution ¢y, g.4.k,p to (1.6), given
by

upakn(@,y) = 0 PQup(w! e, w2 (1 4 )T y). (1.9)

Every nontrivial nonnegative solution to (1.6) is of the form

P(X) = Pu,p.d.kp(X +X0),
for some x¢ € R?.

For brevity of notation, in what follows we will drop the subscripts g, d, k,
and p when the values of these quantities are clear from the context, and refer
t0 Yuw.8,d,k,p SIMPLy as @,,.

Also, in what follows, we will restrict consideration to the cases when w > 0
and 0 < p < p¢(d), unless otherwise specified. Indeed, the assumption that
0 < p < pe(d) necessarily entails that w > 0: every solution ¢ € H' of (1.6)
must satisfy the Pohozaev-type identities (cf. [8], p. 258)

/[\V<p|2+ﬂwlvy<ﬂl2] dX+W/|<P|2 dx:/lsolp+2 dx

2d
(@=2) [ 196 + Bl ,0?] dx+wd [ 1o dx= 25 [l ix,

from which it follows easily that if 0 < p < p.(d) and ¢ is nontrivial, then w
must be greater than zero.

An important functional for the study of bound-state solutions is the action
functional S, (u) defined on H!, for a given w € R, by

Sw(u) := E(u) + wM (u).

Lemma 1.5. Suppose d > 1, 0 < k < d, p >0, >0, andw € R. A
function v € H' is a critical point for the functional S,,(u) if and only if it is a
bound-state profile for (1.4) with phase speed w.

Proof. The gradient of S,, at u is given by
Si(u) = E'(u) + wM'(u) = (—Au — [ulPu) + w(u — BAyu).

Therefore v is a critical point of S, if and only if it satisfies equation (1.6),
which is the defining equation for bound-state profiles of (1.4) with phase speed
w. O

Among the bound-state profiles of (1.4), we distinguish those which are
minimizers for a certain variational problem. For each m > 0, define

I, =inf {E(u) :u € H' and M (u) =m}

and
Gm ={ue H": E(u) =I,, and M(u) =m}.



(Note that Gy, could be empty.) If u is any element of G,,, then u must satisfy
the Euler-Lagrange equation E’(u) + wM'(u) = 0 for some w € R. Tt thus
follows from Lemma 1.5 that G,, is a subset of the set of bound-state profiles
of (1.4). We call the elements of Gy, ground-state profiles.

Concerning the structure of ground-state profiles, we have the following re-
sult, whose proof is deferred to Section 2.

Lemma 1.6. Letd > 1,0<k<d,p>0,8>0, andm > 0. If I, <0 and
G is non-empty, then every v € G, has the form

v(x) = ewcpw(x + Xp)
for some w > 0, some 0 € R, and some xg € R?.

Although, by Lemma 1.6, every ground-state profile is (up to phase shift)
nonnegative, not all the nonnegative bound-state profiles given by Lemma 1.4
are ground states. As we will see below (and as was already observed in [29] for
the case when k = d = 1), for some values of the parameters w, 3, d, k, p, the
function ¢, is a local minimizer of F subject to the constraint that M be held
constant, but not a global minimizer; while for other values of the parameters,
w is not even a local minimizer.

Definition 1.7. We say that a set G C Xy 1 is stable (for (1.4) in the H' norm)
if for every € > 0 there exists & > 0 such that if ug € X1 and ||uo — gol|mr <9
for some go € G, then the solution u(t) of (1.4) with u(0) = ug satisfies

inf ||u(t) —
£;gGIIU( ) =gl <€

for allt € R.

The following theorem, giving a sufficient condition for the stability of the set
G'm, is proved in Section 3. We say that a sequence {u,,} in H' is a minimizing
sequence for I, if M(u,) =m for all n € N, and lim E(u,) = I,.

n—oo

Theorem 1.8. Let d>1,0<k<d,0<p<pc(d), >0, andm >0. If
—o0 < I, <0, (1.10)

then Gy, is a non-empty subset of Xy 1, and every minimizing sequence {uy}
for I, has a subsequence {uy;} such that

lim inf |lu,, —v|1 =0. (1.11)

j— oo veEG,
Furthermore, the set G, is stable for (1.4) in the H' norm.

In the case k = 0, when (1.4) is the standard NLS equation, Theorem 1.8 is
a classic result of Cazenave and Lions [9] and Weinstein [27]. In this case, one
can see that if 0 < p < 4/d, then for each m > 0, (1.10) is satisfied and there
exists w > 0 such that
Gm = Fw,



where 4
P = {ePp,(x +x0) : 0 €R, x0 € R} (1.12)

for some w > 0. Our results also generalize those of Zeng [29], who in his study
of stability of solitary-wave solutions of the BBM equation (1.3) considered a
variational problem that is essentially equivalent to the one we consider in the
case k =1 and d = 1. The proof of Theorem 1.8 uses techniques which are by
now standard, but since we do not know of a general result which covers the
present situation, we have decided to include a complete proof here.

The set P,,, which is a (d 4+ 1)-parameter family of functions indexed by 6
and xg, bears a resemblance to the orbit of the ground-state solution u(z,t) =
etp,(x + %) of (1.4), which is by definition the one-parameter family of
functions

O, = {ei“’tgaw(x +x¢):t€ R} )

For this reason, when P, is stable, it is sometimes said in the literature that the
bound-state solution with profile ¢, is orbitally stable, a term which is somewhat
misleading, given that P, and O, are not the same. At any rate, the stability
of P, turns out to be a useful first step in obtaining more detailed results on
the asymptotic behavior of perturbed ground-state solutions.

In Theorems 4.11 and 4.12 below, we determine for each d > 1 and 0 <
k < d the range of values of the exponent p and the parameter m for which the
necessary condition (1.10) for stability holds. Theorem 4.11 recapitulates the
classic theory for £k = 0. In Theorem 4.12, treating the general case k > 1, we
find that G, is stable when 0 < p < 4/d when m > 0 (as in the case k = 0), but
also that G, is stable when 4/d < p < min(4/(d — k), p.(d)), if m is sufficiently
large. This contrasts with the case k = 0, where it is known that if p > 4/d
then G,, is unstable for every m > 0.

In contrast to the proof of Theorem 1.8 in Section 3, the material in Section 4
is mostly new, requiring analysis adapted to the partial regularization present in
equation (1.4). In particular, we require use of the anisotropic Sobolev inequality
(2.6), and of certain scaling arguments specific to (1.4).

As shown above in Lemma 1.6, all ground-state solutions have nonnega-
tive profile functions ¢, which are described in Theorem 1.4. However, not all
standing-wave solutions with nonnegative profiles are ground-state solutions. In
section 5, we consider the orbital stability of some bound-state solutions with
nonnegative profiles which are not ground-state solutions.

Define a function m : (0,00) — R by

m(w) = M(p.), (1.13)
where ¢, is as defined in Lemma 1.4. Weinstein [26, 27, 28] showed that if
k = 0, the set P,, defined in (1.12) is stable for (1.2) in H!, for all w such that

the derivative m’ = ‘é—’g satisfies

m'(w) > 0. (1.14)



The condition (1.14) had earlier appeared, in the context of a linear stability
analysis of (1.2), in the work of Vakhitov and Kolokolov [19, 25], and for this
reason it is sometimes called the Vakhitov-Kolokolov stability criterion.

In Section 5, we show that the condition (1.14) is a sufficient condition for
stability for the regularized equation (1.4) in the case k > 1 as well:

Theorem 1.9. Letd>1,0<k <d, 0<p<p.(d), and 8 > 0. Forw >0, let
pu be the unique nonnegative radial solution of (1.6) defined in Lemma 1.4, let
P be the set defined in (1.12), and define m(w) by (1.13). If m’(w) > 0, then
P, is stable for (1.4) in the H'-norm, in the sense of Definition 1.7.

Our proof of Theorem 1.9, like that given by Weinstein for (1.2), involves an
analysis of the spectrum of the second variation S/ (¢,,) of the operator S, at
pw- A guide to generalizing Weinstein’s argument from the case k = 0 to the
case k > 1 is provided by Theorem 3.3 of [15], which suggests the correct form
of the key Lemma 5.2 used here. It requires some work, however, to verify that
the framework of [15, 16] applies in our case. Our exposition follows the lines
of that given in [20] for the case k = 0.

When k = 0, it is easy to see by a scaling argument that (1.14) holds for all
w > 0 when p < 4/d, and does not hold for any w > 0 when p > 4/d. For k > 1
we can say the following.

Corollary 1.10. Supposed>1 and 1 <k <d.

1. If0 <p<4/d, then P, is stable for every w > 0.

4 4
2. If g <p< min (dk’pc(d)> , then there exists wy such that m'(w) > 0

for every w > wp and m'(w) < 0 for every w € (0,wy). Hence P, is
orbitally stable for every w > wy.

8. If min (d4k,pc(d)> < p < pe(d), then m'(w) < 0 for w sufficiently large

and for w sufficiently near zero.

Proof. From Lemma 1.4, we see that, if £ > 1, then m(w) = f(fw), where f(x)
is defined for x > 0 by

f(z) = z%(1 + z)°(A + Bz),

where a = (4 — pd)/2p, b = (k —2)/2, A = %/g_a|Qd7p‘§7 and B — A +
%B—a |vad7p‘§~ We have

fl(z) = 2271 4 2)° Yeo + cr1z + co2?),
where ¢g = aA, c; =a(A+ B)+bA+ B,and ¢co = (a+ b+ 1)B.
(

If 0 < p < 4/d, then ¢g, ¢1, and ¢y are all positive, so f/(z) is positive for
all x > 0, and therefore m/(w) > 0 for all w > 0, since m'(w) = Bf'(Bw). If



4/d < p < min(4/(d — k), p.(d)), then ¢ < 0 and ¢z > 0, so f'(z) has exactly
one zero xg on (0,00), with f/(x) < 0 for z < xg and f'(x) > 0 for > xo,
which proves part 2. Finally, if min(4/(d — k), p.(d)) < p < p.(d), then ¢y < 0
and ¢z < 0, so f/'(x) < 0 at least for x near 0 and for x large. O

4
Remark. In case min (dk,pc(d)> < p < pe(d), we do not yet know

whether m/(w) < 0 for all w > 0.

Theorem 1.9 gives a sharper criterion for stability than Theorem 1.8: there
exist bound-state solutions of (1.4) which are orbitally stable, but which are not
ground states, and whose profiles @, satisfy E(g,) > 0. For example, Lemma
4.6 below shows that when £ =1, d =1, and p > 4, and w; and ws are given by
(4.8) and (4.9), then for all w such that w; < w < wa, one has that E(p,) > 0
and m/(w) > 0. Therefore the bound state with profile ¢, is not a ground state
(by Lemma 3.3), but is orbitally stable by Theorem 1.9. Such a bound state
is a local minimum for the variational problem of minimizing E subject to the
constraint that M is held constant; but is not a global minimum. The situation
for (1.4) is thus similar to the situation for (1.3), for which the existence of
stable solitary waves that are not global energy minimizers was observed by
Zeng in [29].

In the case k = 0 and 4/d < p < p.(d), for which we have m'(w) < 0 for
every w > 0, the set P, is actually unstable, as was proved by Weinstein [26] for
p = 4/d and Berestycki and Cazenave for p > 4/d (see [8], section 8.2). It is an
interesting question whether the condition (1.14) is also necessary for stability
in the general case when k& > 1.

The remainder of the paper is organized as follows. Notation and some
preliminary results are collected in Section 2. Theorem 1.8 is proved in Section
3, Theorems 4.11 and 4.12 are proved in Section 4, and Theorem 1.9 is proved
in Section 5.

2 Notation and preliminary results

All integrals will be taken over R?, unless otherwise specified.

For 1 <k <d, if x = (z1,...,24) € R% we write x = (v,y) where z =
(x1,...,24—) and y = (y1,...,Y4), where y; = xq_j4; for i = 1,...d. If f(x)
is a function defined on R?, we use the notation f(z,y) in the cases k = 0 and
k = d as well, with the understanding that f(z,y) denotes f(x) when k = 0 and
f(y) when k =d.

For 1 <7 < oo, L"(R%) denotes the space of all measurable functions u on
R%) such that |ul, := ([ |u]" dx)l/r is finite. We denote by L>°(R?) the space
of all measurable functions such that |u|e = ess sup,cpa|u(x)] is finite.

For s € R, we define H*(R?) to be the L2-based Sobolev space of all complex-
valued functions u on R? such that ||u|s < oo, where ||u||s denotes the norm on



H*(RY) given by

full = ([ @+ Pylaco dk)lﬂ'

Here @ is the Fourier transform of u on RY. We usually refer to H*(R%) and
L"(RY) as H® and L" for short.
For u,v € L?, we define the real inner product (u,v)s by

(u,v)g := Sﬁe/uﬂ dx = /(uwl + ugve) dx, (2.1)

where u = u; + ius and v = vy + ivy are the decompositions of u and v into
their real and imaginary parts.

There is a natural duality between H~! and H'. For f € H~! and g € H!,
define (f,g) € C by

(f9) = [ (F3+ F9) dx (22)

where f denotes the Fourier transform of f. Then for every bounded linear
functional T': H' — C, there is a unique f € H~! such that T(g)(f,g) for all
g € H'. Notice that if f € L2, then (f,g) = (f,g)2 for all g € H'.

We denote by Hj the subspace of H® consisting of all real-valued functions
in H*, and by L2 the subspace of all real-valued functions in L% Notice that
for f,g € L?(R), one has that (f,g)2 = (f,g) € R.

For open sets Q C RY with Lipschitz boundary, and integers n > 0, we
define H™(2) to be the set of all complex-valued distributions on §2 whose weak
derivatives up to order n are in L?(f2), with norm

1/2
T ( [ 1o dx) .

1B]<n

Here the sum is taken over all multi-indices 8 = (51,...,8q4) with 8; > 0 and
1B =B1+ -+ Ba <n.

For R > 0 and x¢ € R?, we denote by Br(xo) the ball of radius R in R?
centered at xg.

The letter C will be used throughout for various constants which can vary
in value from line to line, but whose meaning will be clear from the context.

We state here for easy reference a couple of versions of the Gagliardo-
Nirenberg-Sobolev inequality. For d > 1, we define

4 ford>3
Cd e d—2 - 23
pe(d) {oo ford=1and d = 2. (2:3)

Theorem 2.1. Suppose d > 1 and 0 < p < p.(d). Define

2p + 2 44 p(2 —d)\PY*
Cuy = ot 2 (2E=D) T fu (2.4)

10



where Qqp s as defined in Lemma 1.3. Then for all u € H',

|ulpya < Cd7p|u|;—(17d/(2p+4))|vu|gd/(2p+4)’ (2.5)
and equality is attained when v = Qqp. Moreover, for any bounded open con-
nected set 0 C R% with smooth boundary, there exists C > 0, depending only on
p, d, and 2, such that for all u € H(Q),

1—(pd/(2p+4 d/(2p+4
Jul ey < Clulpa by @ ulb @y .

Proof. See Theorem 9.3 of [13] for a proof that (2.5) holds for some constant
Ca,p, and [18] for the value of the best constant Cy;, given in (2.4). The original
determination of the best constant is in Weinstein [26], where the reader may
also find references to the original papers of Gagliardo and Nirenberg. O

Theorem 2.2. Suppose d > 2,0 < p < p.(d), and 1 < k < d—1. Then there
exists C > 0, depending only on d, p, and k, such that for allu € H*,

d—k k
ulpr2 < Cluls® T I, 15 T Iy, 15 (2.6)
j=1 j=1
where
pd
po=1—=o—
p2p +4 (2.7)
H= 2p+4°
Proof. See [7] and [12]. O

We conclude this section with a proof of Lemma 1.6.

Proof of Lemma 1.6. Given v € G,,, define f € H! by f = |Rev|+1i|Imo|.
Then |f| = |v|, and by Theorem 6.17 of [21], we have |V f| = |Vv| and |V, f| =
|[Vyv|. Therefore f € Gy, also, and so f satisfies the Euler-Lagrange equation

E'(f) +wM'(f) = (=Af = fI"f) + w(f = BA,f) =0 (2.8)

for some constant w € C. -
Multiplying (2.8) by the complex conjugate f of f, and integrating over R",
we obtain

/ (VA2 — [F*2) dx = —w / (72 + BV, fI?) dx.

and since

1 1 1
051 = [ (1951 = g [ure) ez [(vrP 17+ i

11



it follows that w is real and w > 0.
Define g € H* by

F(x) = fla,y) = gz, (1 + Bw) ™ ?y).
(If k = 0 we just define g = f.) Then
—Ag+wg =g’y (2.9)

on RZ. By virtue of satisfying (2.9), we know from Theorem 8.1.1 of [8] that g

is continuous on R?, and that lim g(x) = 0.
|x|—o0

We now apply Lemma 8.1.12 of [8] to the functions hy = Reg and hy = TJm g,
which are related to v by

|Rev(z,y)| = hi(z, (1 + Bw) " /?y)
|Jmu(z,y)| = ha(z, (14 Bw)~y),

and which satisfy the equations

—Ah1 +why = |g|ph1
—Ahg + Whg = |g|ph2

Note that the function a = |g[? satisfies lim a(x) = 0, and multiplying (2.9)

|x|—o00

by g and integrating over R? gives

/ (IVal — algl?) dx = —w / 192 dx < 0.

Therefore the hypotheses of Lemma 8.1.11 of [8] are satisfied, and we can con-
clude that there exists a positive solution v € H' of the equation

—Au + wu = au, (2.10)

and that h; = cu and hy = du for some nonnegative constants ¢ and d.
Since v € G,,, then there exists some @ € C for which

E'(v) + @M (v) = 0; (2.11)
and if we define w € H' by
v(x) = v(z,y) = wiz, (14 62)?y),

then we have that

—Aw + ow = |wlPw (2.12)
on R?. Again using Theorem 8.1.1 of [8], we have that w is continuous on R%,
so ¢ = Mew and ¢ = Jmw are continuous on R? as well. But |¢;| = hy
and |g2| = ha, and h; and hy are both either everywhere positive on R, or

12



everywhere zero on R?, so it follows that ¢; and ¢» cannot change sign on R¢.
We thus have that ¢ = cu and ¢z = du for some constants E,CZ € R with
|¢]| = ¢ and |d| = d. From (2.10) it then follows that —A¢; + wg1 = aq1 and
—Ags + wge = agz, so (recalling that |g| = |w|) we have

—Aw + ww = aw = |w|Pw. (2.13)

In particular, comparing (2.12) and (2.13) we see that @ = w.
We have now shown that

v(z,y) = @+ id)ulz, (1+ pw) %),

where u is positive everywhere on R?. Choosing # € R such that e = éml’

we have v = 1) where 1 is positive. From (2.11) it follows that 1 is a solution
of (1.6), and hence Lemma 1.4 implies that

P(x) = pu(x+x0)

for some xg € R O

3 Proof of Theorem 1.8

The proof of Theorem 1.8 proceeds by applying the method of concentration
compactness to minimizing sequences, along the lines of [22] (see also [29]).

We recall the basic concentration compactness lemma from [22]. A proof of
the lemma in the form given here may be found in [1].

Lemma 3.1. Suppose m > 0, and let {p, } be a sequence in L*(RY) satisfying,
for all n € N:

pn >0 on R? and/pn dx =m.
Then there exists a subsequence {pn; } with one of the three following properties:

1. (compactness) There exists a sequence {x;} such that for every e > 0 there
exists R < oo satisfying for all j € N:

/ Pr; dX >m — € (3.1)
Br(x;)
2. (vanishing) For all R > 0,

lim sup / Pn; (X) dx = 0; (3.2)
Br(x0)

J=00 xR

or
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3. (dichotomy) For all R > 0, we have that

s(R) = lim sup / Pn; (X) dx
Br(xo)

J—=o0 xo€ER4
exists, and for some o € (0,m) we have

Rli_r)noos(R) =a. (3.3)

Lemma 3.2. Letd > 1,0<k <d, 0<p<pd), 3>0, and m > 0. If
I, > —o0o and {un} is a minimizing sequence for I,,, then there exists C > 0
such that |Juy||1 < C for allm € N.

Proof. Since {u,} is a minimizing sequence for I,,, > —oo, then {F(uy)} is
bounded. Let B be such that |E(u,)| < B for all n € N. By Theorem 2.1, for p
satisfying the stated assumptions, there exists C' > 0 such that |u|p+2 < C|lull1
for all u € H'. Therefore

2 2
lnllf < 2m 4+ 2B(un) + = funl 23
20P+2
< 2m + 2B + = ||Jun |22,
p+2
from which it follows that ||u,||1 is bounded. O

Lemma 3.3. Let d > 1,0< k<d,p>0,and 8 >0. If0 <m < m, then
0 > I, > L. (Note that we include the cases here when I, or Iy is —00.)

Proof. First we show that I,,, < 0 for all m > 0. To see this, for given m > 0
choose u such that £ [|u|? dx = m, and for n € N define u,,(x) = n~%2u(x/n).
For k = 0 we have M (u,) = m for all n, and for k > 0 we have

M(uy) = %/MQ dx +n? (§/|Vyu|2 dx) ,

so lim M (u,)=m. Also,

n— oo
E(up) =n"? 1/|Vu|2 dx | —n=% L/|u|p+2 dx
n 9 p+2 s

so lim E(uy) = 0. This proves that I,,, <0.

n— oo
Now for given m and 7 such that 0 < m < m, let {u,} be a minimizing

sequence for I,,,, and define @, = fu for n € N, where 8 = /(m/m) > 1. Then
for all n we have M (@) = m and

I < E(tin) = (;/|Vun|2 dx) — pw/A+ <p41_2/|un|er2 dx)
= BE(uy,) — (ﬂ(p/2)+1 —B) <pi2/|un|p+2 dx) (3.4)

14



Taking the limit in (3.4) as n — oo, we get that Iz, < 81,,. But since I,, <0
and B > 1, it follows that I; < I,,. O

Lemma 3.4. Let d>1,0<k<d,p>0,8>0, and m >0. If I, <0, then
for every minimizing sequence {un} for I,,, there exists § > 0 such that

/\un\”Q dx > 9 (3.5)

for all sufficiently large n.

Proof. Suppose there exists a minimizing sequence {u,} for which such a num-

ber § > 0 does not exist. Then lim inf/ [u,|PT2 = 0, and so
n—oo

I, = lim E(u,) > hrnlnf /|Vu|2 dx > 0,

n—oo
contradicting our assumption about I,,. O

The following lemma is a simple example of what is called an “inverse Sobolev
inequality” (cf. Lemma 4.9 of [18] for a more sophisticated example). Although
the lemma is well-known, we are not aware of a convenient reference for it, so
we include a proof for the reader’s convenience.

Lemma 3.5. Letd > 1 and 0 < p < p.(d). For every B > 0 and every 6 > 0
there exists n > 0 such that if f € H*(R?) with || f||; < B and [, |f|PT2 dx > 6,
then

sup / |f|PT2 dx > . (3.6)
Bl(xg)

X0 €Rd

Proof. Let {Q,}5%, be a sequence of cubes of side length 2/v/d in R% whose
union is all of R? and whose interiors are disjoint. For f € H'(R9), we have

Z [, (P I9IP) ax= < B =3 s o [
p+2
where |f|,12 denotes || f||zr+2(ray. It follows that there exists ng € N such that
/ (1717 2) ¢ B +2
7P+ V1] |1 ax
o If \,’Zié Qng

On the other hand, by our assumption on p and Theorem 2.1, there exists C' > 0

such that
1/(p+2) 1/2
(/ Filas dX> <C (/ (IFP+ IV FP) dx)
Q Qn

n
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for all f € H'(R?) and all n € N. Therefore

1/(p+2)
CB
Filkas dx) < == (/
</Q a2 \ Jq.,

from which it follows that

1/2
Vi dX> ,

no 0

/ |FIPT2 dx > 1,

no

where 7 = (‘g—g)”(“/”). This implies (3.6), since Q,,, is contained in a ball of
radius 1. 0

Lemma 3.6. Letd >1,0<k<d,p>0,8>0,andm>0. If —oo < I, <0,
then
I9m<91m

for all 6 > 1.

Proof. Suppose 6 > 1 and —oo < I, < 0, and let {u, } be a minimizing sequence
for I,,. Then for each n € N we have M (v/6u,) = 0M (u,) = #m. By Lemma
3.4, there exists 0 > 0 such that (3.5) holds for all sufficiently large n. Therefore,
for such n we have

1 1
< — - 2 _plp/2)+1 [~ p+2
Ipm < E(V0u,) =6 <2/|Vun| dx> 0 <p+2/|un| dx)

1
= 0E(u,) — (0724 —0) (p+z / g [P 2 d")

< OFE(up) — (0P/2DF1 — 9)s.

Taking n — oo in (3.7), we get
Tpm < 01, — (0P/DFL _0)6 < 01,,,.

Lemma 3.7. Let d > 1, 0< k <d,0<p<pd), >0, andm > 0. If
—o0 < I, <0,0<my <me, and m = mq + ma, then

Im < Imy + Im,.

Proof. We may assume that I,,,, < 0; otherwise I,,,, = I,,, = 0 by Lemma 3.3,
and the statement of the Lemma is obvious. Also I,,, > —oo; otherwise by
Lemma 3.3 we have I,,, = —oco, contrary to assumption. Let { = msy/m;. Then
using Lemma 3.6, we obtain

L = Iy i 170)) < (L + (L/O) Dy = Ly + (/) L eim,y
< Imz + (1/<)CIm1 = Im2 + Im1~
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In the following lemmas we assume that {u,} is a minimizing sequence
for I,,, and apply the concentration compactness lemma, Lemma 3.1, to the
sequence {p,} defined for n € N by

Pn = (|Un|2 + ﬁ‘vy“nF) . (3.8)

N =

Lemma 3.8. Letd > 1,0 < k < d, 0 < p < pc(d), B >0, and m > 0.
Suppose that —oo < I, < 0. If {u,} is a minimizing sequence for I, then
the “vanishing” alternative of Lemma 3.1 does not hold for the sequence {pn}
defined by (3.8).

Proof. By Lemma 3.2, {u, } is bounded in H!, and by Lemma 3.4, if vanishing
holds then (3.5) is true for all sufficiently large n. So by Lemma 3.5, there exists
1 > 0 such that
.
xo€R? J By (x0)
holds for all sufficiently large n. But this shows that (3.2) is not true for R =
1. O

Lemma 3.9. Letd > 1,0 < k <d, 0 < p < pc(d), >0, and m > 0.
Suppose that —oo < I, < 0. If {u,} is a minimizing sequence for I, then
the “dichotomy” alternative of Lemma 3.1 does not hold for the sequence {pn}
defined by (3.8).

Proof. First, we claim that dichotomy implies the existence of a subsequence
{un,} and two sequences {g;} and {h;} in H' such that

lim M(g;) = a,

j—o0

lim M(h;) =m—c«, and (3.9)

j—o0
Jim (E(un,) — [E(g;) + E(hy)]) = 0.
To prove this claim, let € > 0 be given. If dichotomy holds, then by (3.3), for
each real number R greater than some Ry, there is a corresponding Ny = Ny(R)
such that for all n > Ny, we can find x,, € R? satisfying

1
a—e< 7/ (Jun|® + BIVyunl?) dx < a+e.
2 Br(xn)

Let ¢ and 1 be smooth nonnegative functions on R such that n(z) = 1 for
|z| <1, n(z) = 0 for |z| > 2, and n? + 92 = 1 on R. For each R > Ry and
n > No(R), define



Clearly,
M(grn) > a —e.

Also, from the chain rule and product rule, we have that

|x — x| 1
19,9000 < 9y (P22 ) 4 Lt

! ‘X_Xn|
(57

1 oo
M(grn) < 5/ o [[unl? + BIVyun|?] dx + M/ [unl? + BV yun|?] dx
Bar(xn

/3|77 |2 2 4
2R2 [un]” d

<a+e+R—|—R2,

where C = M(un)(11'loc + Bln'|%) = m(|n'|oc + Bl1'|2) depends only on n and
m. Similarly, we have the estimates

for all x € R%, and hence

1
M(hpy) > */ [[unl? + BIVyun|?] dx >m —a —€
2 JRA\ Bag (xn)
and
1 w 0
M(hpn) < 5/ [unl?® + B|Vyun|*] dx + 2= [/l / [lun|? + B|Vyun|?] dx
R\ BR(xn)
BWJ |2 | |2
2R? tn
<m-a+e+ —= +

R RQ’

where C' depends only on ¢ and m. Therefore (assuming without loss of gener-
ality that Ry > 1) we have that there exists a constant D, depending only on
m, such that

D
|M(9R,n) _a| <et+ —

g (3.10)
M) = (m =) < e+ 7
for all R > Ry(e) and all n > Ny(R,€).
Now since n? + 2 = 1, it is easy to see that
|u | |unl* |
[Vun|* = [Vgral* ~ ’| < (12 + 10/ [2) + 25 (| + 6l

where we have suppressed the arguments |x —x,|/R from n, ¢, and their deriva-
tives. Also, we have

[+ [+

|tn, - |9R,n - ‘hR,n|p+2 = |un|p+2 [(772 - 77p+2) + (¢2 - ¢p+2)]
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where again we have suppressed the arguments |x — x,,|/R from 7 and 4. Since
the function in brackets on the right-hand side of the last equation vanishes for
|x — x| < R and for |x — x,| > 2R, we have the estimate

AR,n

where Ap, = {x eRY:R< |x — xp| < 2R} and C' depends only on 7 and .
Therefore we can write

|E(un) — [E(9r,n) + E(hry)]| < D (11% + /A y |y, [P2 dx) ,

where D depends only on m.
By Theorem 2.1, there exists C such that for all n and R,

/ |u, [PT2 dx < C / |t |2
AR,n AR,

[ |28/ 2PED - (3.11)

n

) (2p+4—pd)/(2p+4)

However,

/ |2 dxg/ [lunl? + BIV yun|?] dx
AR,n R

,n

[lnl? + BV yun?] dx—/ lfenl? + BV yunl?] dx

Bar (%) Br(xn)

<2a+e—(a—e)=de

and hence from (3.11) it follows that
/ |u, [PT2 dx < CeT,
AR,n

where 7 = (2p+4 —pd)/(2p+4) > 0. To summarize, then, we have shown that
for every € > 0, there exists Ry > 1 and Ny € N such that for all R > Ry and
all n > Ny, (3.10) holds together with

Bun) = [Bgmn) + Bl | D (€ ) (3.12)

We can now use induction to define a sequence of integers {n;} and sequences
of functions {g;} and {h;} such that, for all j € N,

[M(g;) — o <1/j,
[M(h;) — (m —a)| < 1/5, (3.13)
|E(un,) = [E(g) + E(hy)]| < 1/j.

To do this, first define ng = 1; and then assume that n;, g;, and h; have been
defined for 5 < J. Choose € > 0 and R > Rg(€) such that the right-hand sides
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of (3.10) and (3.12) are less than 1/(J + 1); then choose nj11 > No(R,€) such
that nyy1 > ny, and define g;41 = gr,n,., and hyy1 = hgn, . With these
choices we have that (3.13) holds for j = J + 1.

From (3.13) it follows that (3.9) holds. Therefore, at least for all sufficiently

large j, we can define numbers u; and v; such that lim p; = lim v; =1, and
J—00 J—00

gj = 1;g; and izj = v;h; satisfy
M(g;)
M(h;) =m -«
E(un,) = E(3;) + E(h;) + ¢,

J

(%

where lim €; = 0. From this it follows that
j—o0

B (un,) > In+In—o +¢;
for all sufficiently large j, and taking the limit as j goes to infinity gives
Iy > In+ Lo
But this contradicts Lemma 3.7, thus showing that dichotomy cannot hold. [

Lemma 3.10. Letd > 1,0 < k <d, 0 < p < p.(d), 8 >0, and m > 0.
Suppose that —oo < I, < 0. If {u,} is a minimizing sequence for I,,, and the
“compactness” alternative of Lemma 3.1 holds for the sequence {p,} defined by
(3.8), then {un, (- —x;)} has a subsequence which converges in H' norm to a
minimizer u for I,.

Proof. Define 1, (x) = un;(x — x;) and p,,(x) = pn, (x — x;) for j € N. By
Lemma 3.2, {iy,} is bounded in H 1 so by the Banach-Alaoglu theorem and
Rellich’s Lemma, on passing to a further subsequence we may assume that {,, }
converges weakly in H' to some function u € H', and converges strongly to u
in L%(B) for every ball B of finite radius in R?.

We claim that @,; converges strongly to u in L?(R%). To see this, let € > 0
be given. From (3.1) it follows that there exists an R < oo such that for all

JeN,
/ |€Lnj ’2 dx < 2/ Pn; dx <€,
Ix|>R |x|>R

and by increasing R if necessary, we may also assume that

/ lul> dx <e.
x|>R

Writing

Jlan, —af dx< [ fu, <o dxr2 [ fa P axez [l ax
Br(0) Ix|>R |x|>R

20



and using the fact that {a,,} converges to u in L?(Bg(0)), we obtain that

/|ﬂnj 7u|2 dx < 5e

for all sufficiently large j, thus proving the claim.

Since 1, converges to u in L? and Uy, is bounded in H 1 it follows from
Theorem 2.1 that ,; also converges to u in LP*2. Therefore, using the lower
semicontinuity of the norm in H!, we deduce that

E(u) < lim E(ty,) = In. (3.14)
j—o0
We now claim that M (u) = m. By the lower semicontinuity of the norm in
X}, 0, we have that
M(u) < lim M(,,) = m.
j—o0
Assume for contradiction that M (u) < m, and let v = Qu, where 0 = /m/M (u) >
1. Then

62 ) 072 2 2 2
where we have used that I, < 0. But since M(v) = m, this contradicts the
definition of I,,.

Since M (u) = m, then from (3.14) we have that v is a minimizer for I,,.
Since equality holds in (3.14), then

/|Vu|2 dx = lim /|V’L~Ln].|2 dx.
j—o0 -

Hence ||ufy = lm ||y, |
j—o00

,» which together with the weak convergence of {1, }

to u in H'! is enough to conclude that {@in, } converges strongly to v in H'. O

Proof of Theorem 1.8. Let {u,} be a minimizing sequence for I,,,, and define
pn by (3.8). By Lemmas 3.1, 3.8, 3.9, and 3.10, there is a sequence {x;} in R?
and a subsequence {u, } of {u, } such that {u,, (-—x;)} converges in H' to some
u in G,,. In particular, G,, is nonempty. From the definition of G,, and the
translation invariance of E and M, it follows immediately that u(- + x;) € G,,
for every j € N. Therefore for all j we have

0ty = ol < flun, =+l = un, (- = x,) =l

from which (1.11) follows.

To prove the stability of G,,, we can argue by contradiction. If G,, is not
stable, then there exist a number € > 0 and sequences {ug,} in Xy 1, {gn} in
G, and {t,} in R such that

nhHH;O lwon — gnlli =0, (3.15)
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but the solutions wu,(t) of (1.4) with initial data wu,(0) = uq, satisfy

it Jun(tn) = vl > ¢ (3.16)

for every n € N. From (3.15) it follows that nh_)rgo E(ugn) = I, and nILn;O M (upn) =

m, and since F and M are conserved functionals for (1.4), also that 7}1_)11;0 E(un(tn)) =

I, and nhHH;O M (up(tn)) = m. We may assume M (uy,(t,)) # 0 for all n in N.
Define v,, = 0, uy(t,), where 8, = /m/M (u,(t,)), so that nhj;o 0, =1 and

M (vy,) = m for all n in N. Since nh_)rrgo E(v,) = L, then {v,} is a minimizing

sequence for I,,, and therefore, by what has already been shown, there exists a
subsequence {v,,} such that

Jm, ot on; = vl =0

But from (3.16) it follows that for j sufficiently large we have
€

inf o, — ol >
nf on, —vlls 2 3

a contradiction. O

4 Existence of stable ground states

In this section, for each d > 1 and k € {0,1,2,...,d} we determine ranges of the
variables m and p for which the assumption —oco < I,,, < 0 of Theorem 1.8 is
satisfied, and therefore stable ground states exist. The results are summarized
in Theorems 4.11 and 4.12 at the end of the section.

Lemma 4.1. Suppose d > 1.

1. If k=d and 0 < p < p.(d), then I, > —oo for all m > 0.

2. If0<k<dand0<p<4/d, then I,, > —oco for all m > 0.

4
3. Ifd>2,1<k<d-1, and0<p<min<d_k,pc(d)>, then I, > —o0

for all m > 0.

Proof. Under the assumptions of part 1, we have from Theorem 2.1 that, for all
uwe H,
1
E(u) > ——— P2 gx > —C||ulPT? 4.1

()2 ~—5 [ 1™ ax > ~Cllal™ (4.1
where C' > 0 depends on p and d but is independent of u. If M(u) = m, then
since k = d we have from (1.5) that |lul; < B = (2m(1 + 871)/2? < .
Therefore from (4.1) we have I,,, > —CBP*? > —cc.
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To prove part 2, we first note that if 0 < k < d and 0 < p < 4/d then we
can use Theorem 2.1 to obtain the estimate

+2—pd/2 d/2
[ a7+ do < Rl
Then, instead of (4.1), we use the estimate

1 1
E(u) = 3 / |Vul|? dx — P / lu[Pt? dx

+2—pd/2 d/2
— Cluly 272l P2

Y

1 1
Sl — Sl
If M(u) =m > 0, then since |u|3 < 2M (u) = 2m, we conclude that

E(u) = f([lull1), (4.2)

where f(z) = 12% — m — C(2m)ba?¥? and b = L(p + 2 — pd/2) > 0. But
0 < p < 4/d implies pd/2 < 2, and so the function f(x) has a finite minimum
value on {0 < z < oco}. From (4.2) we have that I,,, is greater than or equal to
this minimum value, so I,,, > —o0.

To prove part 3, we note that under the stated assumptions, by the anisotropic
Gagliardo-Nirenberg inequality in Theorem 2.2, there exists C' > 0 such that
(2.6) holds for all u € H!, with p and p given by (2.7). Suppose M (u) = m.
Then

[tg, |2 < |lull1 (forj=1,...,d— k),
2 2m ;
|uy]|§§BM(u)§? (fOI‘j:].,...,k),
lul3 < 2M (u) < 2m,
so it follows from (2.6) and (2.7) that
[ 1l ax < clpul 0",

where C' depends on d, p, 3, and M (u) = m but is otherwise independent of u.
Now we can argue as in the proof of part 2. We write

1 1
E(u) = §/|Vu|2 dx — m/m\p” dx

1 1 1
= gllul} = Slut = 5 [up+? ax
p

1 d—k)/2
Sllullf —m — Clluf 7=

v

=g (ully)

where g(z) = 122 —m—CaP(4=F)/2_ Since 0 < p < 4/(d—k), then p(d—k)/2 < 2,
and so the function g(z) has a finite minimum value on [0, 00), allowing us to
conclude that I,,, > —oo. O
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We pause to note an interesting consequence of Lemma 4.1.

Corollary 4.2. Suppose d>1,0<k <d, §>0,0< p < min (ﬁ,pc(d)),
and m > 0. Let Uy, = {w > 0: M(p,) =m}. If there exists w € Uy, such that
E(p,) <0, then —co < I, < 0 and Gy, is stable. Conversely, if —oo < I, <0,
then there exists w € Uy, such that E(p,,) < 0.

Proof. Suppose there exists w € Uy, such that F(¢,) < 0. Since w € U,,, then
I, < E(p,) by definition of I,,,. Hence I,,, < 0, and I,,, > —oo by Lemma 4.1.
So G, is stable by Theorem 1.8.

Conversely, suppose —oco < I, < 0. Then by Theorem 1.8, G,,, is nonempty,
and by Theorem 1.6, there exists some w € U, such that ¢, € G,,, with
E(p,) =1, <0. O

We remark that the condition that E(p,) < 0 for some w € U,, is not
necessary for the stability of G,,. Indeed, as we see below in the proof of Lemma
46,ifd=1,k=1,p>4,8>0,ws = (p—4)/48, and m = M(p,,), then
U, consists of exactly two numbers wy and w3, for which we have E(¢.,) =0
and E(p,,) > 0. Since I, = 0, then G,,, = P,,. But as shown in the proof of
Lemma 4.6, we have -= M (,,) > 0 at w = ws, s0 P, is stable by Theorem 1.9.

Lemma 4.3. Supposed > 1. If0 <k < d and 0 < p < 4/d, then I,, <0 for
all m > 0.

Proof. Suppose first that 1 < k < d. Fix u € H' such that u is not identically
zero. For each o > 0 and 6 > 0, we have

1
M (au(6x)) = a?0~¢ (2 / |u|? dx) 4?9?14 <§ / IV, ul? dx> . (4.3)
For fixed m > 0, the equation
M(au(0x)) =m

can be rewritten in the form

d

o? = f(0) =

T A+ BO? (44

where A and B are independent of a and . Analyzing the behavior of f(6)
near 6 = 0, we see easily that there exist 8y > 0 and a9 > 0 such that for all
a € (0,ap), there is a unique solution § = 6(«) of (4.4) satisfying

Cra?/? < 9 < Cra?/? (4.5)

for some constants C7; > 0 and Cs > 0. Writing now

E(au(fx)) = a?6*~¢ <; / |Vul? dx) —aP2gd <pj-2 / |u[PH2 dx) , (4.6)
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we see from (4.5) and (4.6) that E(au(fx)) < 0 for « sufficiently close to zero.
Hence I,,, < 0.

In case k = 0 we can argue similarly: we choose any u € H! which is not
identically zero; and now, instead of (4.3), we have

M{au(0x)) = o201 <;/u|2 dx) .

Therefore, for all m > 0 and all @ > 0, we have M (au(fx)) = m if we take
0 = o*/(mM(u))?/¢. Then as above it follows from (4.6) that E(au(fx)) < 0
for a sufficiently small, and hence that I, < 0. O

Lemma 4.4. Suppose d > 1, k =0, and p = 4/d. Let my = M(Qq,p), where
Qa,p is as defined in Lemma 1.3. Then I, = 0 for all m < myg, and I,,, = —o0
for all m > mgy. We have mg = m(p,,) for all w > 0.

Proof. Taking p = d/4 in Theorem 2.1, we obtain that
1 2 1 2 1 2 [ ( |ul2 )p ]
E(u) = = |Vul; — ——ulfT2 > = |[Vul; |1 - [ ———
( ) 2 | ‘2 p+2| |p+2 =9 | |2 |Qd,d/4|2

for all v € H', and that F(Qqg,) = 0. In particular it follows that I, > 0 for
m < mg, and thence, by Lemma 3.3, that I,,, = 0 for m < my.

Now suppose m > mg. Choose A > 1 such that M(AQq,) = m. Then
E(AQaq,p) < 0, showing that I,,, < 0. If it were true that I, > —oo, then by
Theorem 1.8 and Lemma 1.6, there would exist w > 0 such that ¢, € G,,, so
that in particular M(p,) = m. But it is easy to check that when k& = 0 and
p = 4/d, one has M(p,) = M(Qq,p) for all w > 0, which is impossible since
m > mg. Therefore we must have that I,,, = —oo.

Finally, note that for w > 0 we have

Pu(x) = 0 Qap(w/?x)

by (1.9). From this it follows easily that M (¢,) = M(Qap)- O
Lemma 4.5. Suppose d > 1, k = 0, and p > 4/d. Then I,, = —oo for all
m > 0.

Proof. For any given m > 0, fix u € H' such that M (u) = m and [ |u|P™? dx >
0 (clearly such a u exists). For a > 0, define u,(x) = a¥/?u(ax). Then for all
a > 0 we have M (u,) =m and

1 1
E(uq) = o (2 / |Vu|? dx) — /2 (M / |u|PT2 dx) .

Since dp/2 > 2, the second term in the expression for E(u,) will dominate the
first term as a — oo. Therefore lim FE(u,) = —oo, and hence I,,, = —oco. O
a—00

Lemma 4.6. Suppose d = 1 and k = 1. For each p > 4, there exists mo =
mo(p) such that I, =0 for m < mg and —oo < I, <0 for m > my.
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Proof. When k = 1 and d = 1, it follows from part 1 of Lemma 4.1 that
I,, > —oo for all p > 0 and all m > 0. We also have for all w > 0 and all p > 0
the explicit formula

1/p
w(p+2 phz
Pu() = pu,p1,1,(@) = <(2)) sech?/? (2) ,

where 0 =, / | _:} 5o A straightforward but tedious computation (see page 27
w

of [29] for formulas for the definite integrals involved) shows that

M(pw) = (W)Q/pi% [1 M <W5Jm>}

E(p.) = (w(p; 2))2/” pa(ipjr)p) {1 +p,3w - 4} ’

(4.7)

L(3)I(3)
where C), = TCily Define m : (0,00) — (0, 00) by m(w) = M(py).
p T2
When p = 4, we see from (4.7) that m/(w) > 0 for all w > 0, lin%) m(w) =
w—r

V3T Vo

,and lim m(w) = oo. Therefore, if we define mg = *Z™, we see that to
2 w—00

each m > myq there corresponds a unique w € (0, 00) such that m = m(w). We
also see from (4.7) that when p = 4, we have E(p,) < 0 for every w > 0. It
thus follows that I,,, < 0 for every m > mg. On the other hand, for m < mg we
have I, < 0 by Lemma 3.3, and if I,,, < 0 then by Theorem 1.8 and Lemma
1.6 there exists some w > 0 such that ¢, € Gy, and in particular m(w) = m.
But this contradicts the fact that m(w) > myg for all w > 0. Therefore we must
have I,,, = 0.

When p > 4, we find from (4.7) that m/(w) < 0 for 0 < w < wy, m/(wy) =0,
and m/(w) > 0 for w > wy, where

(p—4)Vvi+p

= . 4.8
T avTEp+ Vep)B (48)

Also, E(py,) =0, where
wa = 174;54. (4.9)

Notice that we > wy for all p > 4.

Define my = M(wz). By Lemma 3.3, I,,, < 0. But if I,,,, < 0, then by
Theorem 1.8 and Lemma 1.6 there exists some w > 0 such that m(w) = mg
and E(p,) = Im, < 0. The equation m(w) = mp has exactly two solutions:
w = ws and w = w3, where w3y < wy < we. Since E(p,,) = 0, then w cannot
equal we. But from (4.7) we see that because ws < ws, then we must have
E(¢ws) > 0, so w cannot equal ws either. This shows that I,,, must equal 0,
and from Lemma 3.3 it follows that I,,, = 0 for all m € (0,mg) as well. On the
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other hand, if m > mg, then m = m(w) for some w > wy, and from (4.7) we get
that E(¢) < 0, proving that I, < 0. O

Lemma 4.7. Supposed >2,0<k<d—1, andp > 4/(d—k). Then I, = —c0
for all m > 0.

Proof. Let m > 0 be given, and fix u € H! such that M(u) = m. For each
a > 0, define
o (x) = au(a?/ @R g 4).

Then for all & > 0 we have M (uq,) = m and

1 1 1
E(us) = §/|Vyu|2 dx + o/ (@=F) (2 / |V pul? dX> —aP (]?—1—2 / || P2 dx) .

Since p > 4/(d—k), it follows that 1i_>m E(uq) = —oo. Therefore I,,, = —co. O

Lemma 4.8. Suppose d >3, 0 <k <d, andp > 4/(d —2). Then I, = —o0
for all m > 0.

Proof. Fix u € H' such that [ |u[P™? dx > 0, and for each a > 0 define
U (x) = au(a’x),
where r is any number such that

2 p+2
_Z < £

i—2°"°"4
(The existence of a such a number r is guaranteed because p > 4/(d — 2).)

Then by taking o, to be any sequence such that lim «, = oo and setting
n—oo

Up = Ug,, We obtain a sequence {u,} which is bounded in H' and which
satisfies lim |up|pt2 = 0.
n— oo

Fix m > 0 and define @,, = B,u,, where 3, = \/m/M (uy,), so that M (a,,) =
m for all n € N. Since {u,} is bounded in H!, then there exists € > 0 such that
for all n € N, 3, > € and therefore

1 P
E(u,) < 42 <2 / |V, |* dx — ]ﬁ/mnv)“ dx) ) (4.10)

For n sufficiently large, the quantity in parentheses in (4.10) is negative, and
therefore we have that

1 P
E(un) < e (2/|vun|2 dx — ]ﬁ / |Un|p+2 dX) - (4.11)

But as n goes to infinity the first integral on the right-hand side of (4.11) remains
bounded, while the second integral goes to infinity. Therefore lim FE(a,) =
n—oo

—o0, and hence I,, = —cc. O

27



Lemma 4.9. For all d > 1, all k such that 0 < k < d, and all p > 0, there
exists mo > 0 such that I, <0 for all m < mg. (Note that I, could be —occ.)

Proof. Choose any u € H! such that u is not identically zero. For every m > 0,
if we define a = m/\/M (u), we have that M (au) = m. Then

E(au) = a? (; / |Vul? dx) — aPt? <_T_2 / |u[PT2 dx) ,
b

and since a — oo as m — oo, we have that E(au) < 0, and hence I,,, < 0, for
m sufficiently large. O

4 4
Lemma 4.10. Supposed > 2 and1 < k < d. Assume p < p < min (dk,pc(d)>
4
(if k # d), or p < p < pc(d) (if k =d). Then there exists mo > 0 such that
L, =0 for 0 <m < mg and —oco < I, <0 for m > my.

Proof. From (1.9) and (1.5) we see that
1
Miga) =4 gt (5 [ R0 ax)

(4.12)
+ WA= ap)/CP)H1 (1 4 gy (R/2)-1 (5/(vyR)2(x) dx) .

2

First we observe that when p > 4/d, M (p,,) takes a positive minimum value
for w € (0,00). Indeed, if p > 4/d, then in the first term on the right-hand side of
(4.12), the exponent of w is negative, and hence lim+ M (py) = co. On the other

w—0

hand, le M(p,,) = oo, because both terms on the right-hand side of (4.12)

are of order w=(=kP)/(2P) a5 () — 00, and 4 — (d — k)p > 0. Since M(¢p,,) is a
continuous function of w on the interval (0, c0), it must therefore take a positive
minimum value m; on this interval. Similarly, if p = 4/d, then from (4.12) we

see that lim M (y,) is a finite positive number, and lim M (¢, ) = oco; again
w—0+ w—o0

we can conclude that M (¢p,,) takes a positive minimum value m; on (0, c0).

We claim that for 0 < m < my, I, = 0. If not, then by Lemma 3.3, there
exists some m € (0,mq) such that I, < 0. By part 3 of Lemma 4.1, we have
that I,, > —oo as well. Therefore it follows from Lemma 1.6 and Theorem 1.8
there exists w > 0 such that M (p,,) = m. But this contradicts the definition of
mq.

Now define mg = sup {m > 0 : I, = 0}. Since mg > mgy, we know that
mg > 0, and from Lemmas 3.3 and 4.9 we obtain that my is finite, with I,,, =0
for all m < mg and I,,, < 0 for all m > mq. By part 3 of Lemma 4.1, I,,, > —o0
for all m > mg. O

Theorem 4.11. Suppose d > 1 and k = 0.
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1. If 0 < p < 4/d, then —oo < I, < 0 for all m > 0. More specifically, we
have —oco < I; < 0 and

1,, = I;mA+E=d)p)/(4—dp) (4.13)

for all m > 0. Hence G, is stable for all m > 0.

2. If p=4/d, then I,, =0 for m < mg and I,, = —oco for m > mg, where
mo = M(Qa,p), with Qqp defined as in Lemma 1.3. We have mg = M (p.,)
for all w > 0.

3. If p>4/d, then I,,, = —oo for all m > 0.

Proof. When 0 < p < 4/d, it follows from Lemmas 4.1 and 4.3 that —oco <
I, < 0 for all m > 0. Equation (4.13) follows from an easy scaling argument:
fix any m > 0, and for each u € H' such that M(u) = 1, define @(x) =
m?/(4=dp)qy(mP/(4=dP)x). Then M (i) = m and E(@) = mA+C-dp)/(4=dp) g (y,),
Taking the infimum over all u such that M(u) = 1 gives (4.13). The stability
of G,, follows from Theorem 1.8.

The cases p = 4/d and p > 4/d are handled in Lemmas 4.4 and 4.5. O

Theorem 4.12. Suppose d>1 and 1 < k <d.

1. If 0 < p < 4/d, then —oo < I, <0 for all m > 0. Hence G, is stable for
all m > 0.

4 4 4

2. Suppose p < p < min (d—k’pc(d)> (if k # d), or p < p < pAd) (if
k = d). Then there exists mg = mo(d,k,p) > 0 such that I, = 0 for
0<m<mg and —o0 < I, <0 for m > mgy. Hence G, is stable for all
m > my.

4
8. Suppose p > min (d—k’pc(d)) (if k #d) or p>pc(d) (if k =d). Then
I, = —o0 for all m > 0.

Proof. Part 1 holds by Lemmas 4.1 and 4.3. Part 2 holds for d = 1 by Lemma
4.6, and for d > 2 by Lemma 4.10. Part 3 follows from Lemmas 4.7 and 4.8.
The assertions of the stability of G, follow from Theorem 1.8. O

Remarks. Theorem 4.12 does not cover the case when p = min (le—k,pc(d)).

We expect that a result analogous to Lemma 4.4 holds for all d > 2 when k =1
and p =4/(d —1). We do not pursue this topic here, however.
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5 Stable bound states

This section is devoted to the proof of Theorem 1.9. Our exposition follows the
lines of the proof given in [20] for the corresponding result for the NLS equation,
adapting the argument there as necessary for our situation.

In what follows, we assume that k£ > 0, § > 0, and w > 0 have been fixed.
We will drop the subscript w from our notation for the bound state ¢, and the
action functional S,,, referring to them simply as ¢ and S.

For each € > 0, define

U =3veH': inf Oy —y) — <ep.
{v %R}geRdIIe v(-—y) —¢lh 6}

Recall that the real inner product (-,-)2 on L? was defined in (2.1).

Lemma 5.1. There exist € > 0 and two functionso : U - R and Y : U, — R¢
such that for all v € U,

io(v . . 0
e @y(- =Y (v)) — p|s = 9enégfeRd |e v(-—y)— (p|2. (5.1)

Furthermore, the function w = ¢ y(- — Y (v)) satisfies
(w,ip)2 =0 (5.2)

and

(w’a@> =0 foralje{l,...,d}. (5.3)
an 2

Proof. This is proved in Lemma 6.2 of [20]; for the reader’s convenience we
sketch the proof here. Define ¢(6,y,v) = |¢"v(- — y) — ¢|2, and note that for
sufficiently small e > 0, if v € U, then there exists (6,y) € R x R? such that

ol0.y,0) = il e0y,0).
Indeed, suppose v € U, and let (6,,y,) be such that lim, ;o0 (0n,yn,v) =
inf(p yyerxrae P(0,y,v). If € is sufficiently small, then p(0,y,v) > e for |y|
sufficiently large; and therefore the sequence {(6,,y,)} must be bounded in
R x R, Hence some subsequence of {(0,,y,)} converges to a minimizer (6,y)
for p(6,y,v), and we must have F(é, y,v) = 0, where F'(0,y,v) is the derivative
of ¢(0,y,v) with respect to (0,y).

By the Implicit Function Theorem, there exist § > 0 and € > 0 such that for
each v satisfying ||v — ¢||1 < €, the equation F(6,y,v) = 0 has a unique solution
(6o, y0) satisfying [(6o,y0)| < . From the equation F'(fy,yo,v) = 0 it follows
that (5.2) and (5.3) hold if we set o(v) = 6y and Y (v) = yo. But according
to Lemma 6.1 of [20], by taking e smaller if necessary we can guarantee that
|(§, ¥)| < 6. Therefore by uniqueness we must have (é, y) = (00,y0), and so
(5.1) holds as well. O
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Our next goal is to analyze the properties of the second variation S”(¢) of
S at . In general, for u € H!, we define S”(u) : H' — H~! as the operator
such that

S(uw) ~ S(u) = (8" (u), w —u) + (8" (w)(w —w),w —u) + ol — wl}) (5.4

as ||lw — ull; — 0, where (-, -) denotes the pairing between H' and H~! defined
in (2.2).

A computation shows that if w € H' is written as w = u+iv, where u € Hg
and v € H} are the real and imaginary parts of w, then

<S//((p)wvw> - <L1U,U> + <L2Ua U>7 (55)
where L; and Ly are defined as operators from H} to Hy ' by

Liu=—-Au+wPsu — (p+ 1)¢Pu
Lov = —Av 4+ wPgv — pPv.

For u,v € HgZ, we have that Liu and Lov are in L*(R). Let L, and Ly be
the restrictions of Ly and Lo to HH%; then we can consider il and Eg to be
unbounded operators on L2 with domain HZ. One then verifies that L, and Lo
are self-adjoint operators on L% with respect to the inner product (-, -)s.

For f € L3(R?), define A[f] € L2 — L2 by setting, for all x = (z,y) € R?,

Alf](x) = fz, V14 Bw y).
If we let ¢° = Agp, and define operators L) and L3 on L2 by

Lou=A [il(A_l[u])}
_ B (5.6)
180 = A [La(A" )]
then we have B
LYu = —Au+wu — (p+1)(0")Pu
LYy = —Av 4+ wv — (¢°)Pw.
The operators E? and I:g are exactly the operators discussed in Lemmas 4.12
through 4.19 of [20].

From Lemmas 4.16 and 4.17 of [20], we have that L9 has only one negative
eigenvalue —\1, with a one-dimensional eigenspace; and that 0 is an isolated

eigenvalue of E‘f, with eigenspace spanned by the functions {g—f) g=1,... ,d}.
J

From (5.6) it follows that —\; is also a simple eigenvalue for the operator Ly,

and is the only negative eigenvalue, and that 0 is an isolated eigenvalue of L

with eigenspace spanned by the functions {%j i=1,.. .,d}. Let e; be an

eigenvector for L, for the eigenvalue —\;, normalized so that (ej,e1)s = 1.
Then we can decompose H} as
Hi=E ©ZoE,, (5.7)
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where E_ is the one-dimensional subspace spanned by ey, Z is the kernel of Ly,
and E, is the image of the spectral projection corresponding to the positive
part of the spectrum of L. The decomposition is orthogonal with respect to
the inner product (-,-), and (Lyf,g) defines a positive definite quadratic form
on E. , satisfying the Schwarz inequality

(Lyf,9) < (Lo f, f){Lrg, g)
for all f,g € E.

Lemma 5.2. Suppose w > 0 is such that m/(w) > 0, and let ¢ = ¢, be as
defined in Theorem 1.9. Suppose u € Hy and u is not identically zero on RY.

If

(u, Pgp)2 =0 (5.8)
and 5
g\ P
(u,axj>20 (Gj=1,...,d), (5.9)
then y
<L1u,u> > 0. (5.10)

Proof. We follow the lines of the proof of Lemma 4.19 of [20]. Let H! be the
space of all real-valued radial functions in H'(R%), and define F : Rt x H} —
H~! by
F(w,¢) = —Ap +wPsp — ¢,

From equation (1.6), we have that F(w, ¢) = 0. We claim that ¢ = ¢,, depends
differentiably on w. To see this, we apply the Implicit Function Theorem to
(1.6). Let D : H' — H~! be the derivative of F with respect to ¢, evaluated
at (w,¢,). One finds that D is the restriction of L' to H!. As noted above,
the kernel of L! in H' consists of linear combinations of the functions 57“’]_,
je{l,...,d}. Foreachj e {1,...,d}, since gTi is odd in z;, it is orthogonal
to H!. Therefore the kernel of D is trivial, and so it follows from the implicit
function theorem that the map w > ¢,, is a differentiable map from R* to H}!.

We are therefore justified in taking the derivative of (1.6) with respect to w.
This yields the equation

Ly = —Pp,

where ¢ = 08%' Note that we have also shown that

(w,;‘pszo (G=1,....d). (5.11)

Since

d ~
% (907 Pﬁ@)z = _2<L1¢7¢>7
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it follows from our assumption m’(w) > 0 that

(L1, ) < 0. (5.12)

Taking the decomposition (5.7) into account, and using (5.9) and (5.11), we can
write

u=pey +&

'(/J =ve +1,

where u,v € R and &,n € E,. } .
If w = 0, we are done, because we then have (Liu,u) = (L1£,€) > 0.
Therefore we may assume that p # 0. Observe that (5.8) implies

0= (ua Pﬁ(p)z = _<i1d)7u> = :ul/)‘l - <Z1£3n>7

and therefore ~
(L1&,m) = prAs. (5.13)
We claim that n # 0, because the assumption n = 0 leads to a contradiction:
if » = 0, then necessarily v # 0, so (5.13) implies <I~/1§7n> # 0, contradicting
n = 0. Hence <I~/1777 1) > 0, and we can use the Schwarz inequality for the form
(Ly-,-) on E, to write

(Lyu,u) = —p2 A + (L1€,€)

<I~/1€777>
> —,uz)\l +
<L1773 77>
From (5.13) it then follows that
B 2,22
(Lyu,u) > —p A + rYV A
{Lan,m)
2 2 i 2,212 ~
A A1 (v AL+ <L1w,¢>) +uTrIAY _ =ML, y)
(Lam,m) (Lym,m)
When combined with (5.12), this proves (5.10). O

From Lemma 5.2, via a standard argument (see, for example, the proof of
Lemma 4.13 of [20]), one obtains the following corollary.

Corollary 5.3. Under the same assumptions as in Lemma 5.2, there exists
81 > 0 such that for all uw € H} satisfying (5.8) and (5.9), we have

(Lyu,u) > 8u|ullf.
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Lemma 5.4. Under the same assumptions as in Lemma 5.2, there exists § > 0
such that for all w € H' satisfying

and P
(w, ‘P> —0 foraljefl,....d}, (5.16)
a.%'j 2
we have
(S" (p)w, w) > dlw3. (5.17)

Proof. Suppose w = u+iv € H' satisfies (5.14), (5.15), and (5.16). From (5.15)
we have that

0= (Uv 9‘7)2 = (A’U’ @0)2’

and hence, by Lemma 4.13 of [20], there exists a number d2 > 0, which is
independent of w, such that

(L§(Av), Av) > 62| Av]F.
From (5.6) it then follows that
(Lo, v) > &a|v|)3. (5.18)

The estimate (5.17) now follows immediately from (5.5), Corollary 5.3, and
(5.18). 0

Lemma 5.5. Under the same assumptions as in Lemma 5.2, there exist € > 0
and C > 0 such that for all v € U, satisfying M (v) = M(p), we have

E(v) = BE(p)>C _inf  [lev(-—y) - ¢.

0eR,ycRe

Proof. Choose € > 0 sufficiently small that Lemma 5.1 applies, and suppose
v € U, satisfies M (v) = M(y). Define w € H' by

w =7 - Y (0)),

so that by Lemma 5.1 we have that (5.2) and (5.3) hold.
Define z € H' by

z=(w— ) — APgp, (5.19)
where
A\ = (w - %Pﬁ@)z
|Psels
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so that
(2, Pagp), = 0. (5.20)

Note that since ¢ and Pg¢ are real-valued, we have that

(p,ip)2 =0
(P, i)y = 0.

Also, since Pj is self-adjoint on L? and % is skew-adjoint on L? for each
J

j€{1,...,d}, we have that
Op
) o
(907 axj>2 )

Oy
(PW’ axj)z -0

Therefore
(2,i0)2 =0 (5.21)
and, for each j € {1,...,d},
(z, a‘”) = 0. (5.22)
Iz ),
From (5.20), (5.21), (5.22), and Lemma 5.4, we get that
(8"(p)z, 2) = 8]l|11- (5.23)

Note now that for all v1,v, € H' we have
M (vy 4 v2) = M(v1) + M(v2) + (Pgvi,v2), .
Therefore, from the assumption M (v) = M(p) we deduce that
0=M(v) = M(p) = M(w) = M(p) = M(w —¢) + (Psp,w — ¢)y,

and hence that

|Pspl3
for some constant C' which is independent of our choice of v € U,. From (5.19)
and (5.24) it follows that there exist constants Cy > 0 and C3 > 0, independent
of v € U, such that

< Cllw - ¢? (5.24)

Cillw = ¢l < 2]l < Colfw — ¢l (5.25)

Starting from (5.4), recalling that S’(¢) = 0 by Lemma 1.5, and using (5.19),
we can write

S(v) = 5(p) = S(w) — S(¢)

= 28" (@)(w — ¢)w— ¢) +o (lw— el})

_1 {(9"(2), z) + X*(5"(¢) Psp, Pasp) + 2M(S" (@) Ps, 2) } + 0 ([lw — lI})

2
(5.26)
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as ||lw — ¢||1 = 0. Since
A28 () Pso, Paw)| < CIAP < Cllw — ollt

and
IA(S" (@) Pag, z)| < C|A|||z]l1 < CIA|lw — |1 < Cllw — o[,

it follows from (5.23), (5.25), and (5.26) that

1
S(v) = S(p) = 5(5"(p)z2) + of|w — ¢l
)
> 221 + o (Jw = «llf)
1)
> Z”w - (PH%

for ||w — ¢l|1 sufficiently small.
Hence, if M(v) = M(p), v € U, and ¢ is sufficiently small, we can conclude
that

B) ~ B(g) = 5() ~ $(0) > 2w~ 41,

from which the statement of the Lemma follows. O

Proof of Theorem 1.9. Theorem 1.9 follows easily from Lemma 5.5, by the
following (standard) argument, which we paraphrase from [22]. Suppose the
assertion of the theorem is false; then there exist a number € > 0 and sequences
{upn} in Xp1, {0n} in R, {y,} in R? and {¢,} in R such that

lim ”ewnUO,n(' —¥n) = ¢llm =0, (5.27)

n—0o0

and for alln > 1, 0 € R, and y € R?,
eun(- = y,tn) = @lla > €, (5.28)

where u, (x,t) is the solution of (1.4) with initial data u,(x,0) = ug ,(x).
From (5.27) we deduce that lim E(up,) = E(y) and lim M(ug,) =
n— o0 n—00
M (p), and since E and M are conserved functionals for the flow of (1.4), it
follows that

lim E(un(-,t,)) = E(p) and lUm M(un(-,t,)) = M(p).

n—oo n—oo

For n > 1, define
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then we have that M(v,) = M (un(-,t,)) for all n, while li_>m E(v,) = E(p)
and lim ||vy, —un(-,t,)||gr = 0. Choose Ny such that [|vy, — un (-, 0) || g1 < €/2
n—oo

for all n > Ny. For every n > Ny, every # € R and every y € R?, we have

Hewvn(' - Y> - (pHHl > Hewun<' - yatn) - L‘DHHl - Hew [un( - Y7tn) - UTL(' - Y)]HHl

€
>€— ||vn - un(atn)” > 5

by (5.28), which shows that

inf _[le%on( ~y) = ¢l > 5

0cR,ycRd

for n > Ny. But on the other hand, from Lemma 5.5 we have that

et - 3) el =0

a contradiction. O
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